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Ecublens-CH-1015 Lausame. Switzerland 
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Abstract. The ground state of the one-dimensional Falimv-Kimball model is COR 
sidered for large values of the interaction strength U. If the ion density pi  = p/q ( p  
and p relatively prime) is rational and equds the electron density p .  we prove that 
for U > Up"(p) the ion configuration is the most homogeneous one. If 0 < pe < pi 
and U > U r g ( p e / p i )  we prove that all the ions condense into one large cluster. This 
last result provs a recent conjecture known ar the segregation principle. 

1. Introduction 

The Falicov-Kimball model has a long history. Together with the Hubbard model 
and the periodic Anderson model i t  is one of the mostly studied models to describe 
correlation effects in interacting fermion systems. I t  was originally introduced to study 
metalkinsulator transition in transition-metal oxides [l]. In this context it is a lattice 
model describing the interaction between mobile d electrons and localized f electrons. 
The interaction is on-site. The Hamiltonian of the model is then 

H = - tcyafay - U C W(z)a,+a,  
r , y E A  = E A  

A C 7%' is usually taken to be a square lattice and t , ,  = 1 if x and y are nearest 
neighbours and zero otherwise. af and a,  are fermion creation and annihilation 
operators. W ( x )  is 1 or 0 according to whether the site is occupied by an f electron 
or empty. The Fti model has other physical interpretations. I t  can be seen as a 
modification of the Hubbard model (sometimes called the static model [2]) in which one 
assumes that,  for instance, the I-spin electrons are infinitely massive. Thus they have 
no kinetic energy and can be considered as classical particles. Another interpretation 
is to consider the Fti model as a model for crystallization. In this case we think of the 
classical particles as ions. This is the point of view adopted in this paper. We shall 
denote a specific ion configuration by s. 

Several interesting rigorous results have already been obtained (see [2-10]). In 
the half-filled band case it was shown that the model exhibits antiferromagnetic long- 
range order a t  low temperature, while at high temperature the correlation functions 
decay exponentially [2, 31. The ground-state phase diagram in the plane of chemical 
potentials (grand canonical ensemble) has been investigated analytically in [3-61. In 
this paper, we shall focus on the ground state of the one-dimensional model. The 
simplicity of the model then allows us  to work in the canonical ensemble, that is to 

0305-4470/92/040715+19%04.50 @ 1992 IOP Publishing Ltd 715 



716 P Lemberger 

fix the number of electrons Ne and ions N, rather than the corresponding chemical 
potentials. In a recent paper [ll] Freericks and Falicov investigated the ground-state 
phase diagram of this model by computing the density of states of a restricted set of 
ion configurations. Their set contains afiuite number (= 10) of periodic configurations 
as well as the segregated configuration sse&Ni) in which the N, ions stick together t o  
form one large box of size N, .  They present two conjectures. The first one claims that, 
for small U, the ground state satisfies some uniform distribution property. Indeed, we 
shall prove such a property for large (but finite) U when Ne = N,.  To be more specific, 
we shall make precise the meaning of the following statement: configuration s, is more 
homogeneous than configuration s2.  Then, in section 3 we shall show that the ground 
state is the most homogeneous configuration shOm(Ni) provided U > @""(pi). 

The second conjecture asserts that the segregated phase is the ground state for 
large U except for p, = p,. In agreement with this, we shall prove in section 4 that, 
for 0 < p, < pi, there exists a domain in the plane (U,p,), where the segregated 
configuration sseg(Ni) is the ground state. Both theorems are established in the frame 
of a rigorous perturbation theory for large IUI. These results are summarized in 
figure 1. 

U 
0 4 U, 

Figure 1. Schematic phase diagrm for the ground-state configurations of the ID 
FK model. 

2. The one-dimensional mode l  

In this section we define the model and fix the notations. For later reference we shall 
also recall some general properties of the F K  model. The model is defined on a segment 
A C Z with periodic boundary conditions. The FK Hamiltonian is 

where W ( z )  = 0 or 1. U may be choosen positive or negative. The argument s 
in H ( s )  is the ion configuration in A: s E {O, 1}lA1. We denote by supps = {z E 
AlW(r) = 1) the set of occupied sites in s. We say that s' is a translation of s 
if supp s' = {r E AIW(z - a) = 1) for some a E E. For an interval I C A we 
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denote by SI, E {O, l}lrl the restriction of s to I, 111 being the number of points in I .  
Ne = CzEA a$az and Ni(s) = CsEA W ( z )  denote the electron and ion numbers, and 
p. = NJlAl and pi = Ni/lAl are the corresponding densities. Ni = 0 and Ni = 1A1 
correspond respectively to the empty and full configurations. The Hamiltonian (1) 
can be expressed with a single-particle operator h(s) ,  

T has matrix elements -tzy where t , ,  = 1 if 12 - yl = 1 and zero otherwise. W is the 
diagonal matrix with elements W ( z ) .  For fixed Ne and s, H ( s )  has a ground-state 
energy E(N,, s). If Xj(s), j = 1 , .  . . , IAI, are the eigenvalues of h(s )  in ascending order 
we have 

N. 
E(N, , s )  = CAj("), 

j =1  

In (21 it was shown that the following operator inequality holds when > 4: 

(3) 

which means that the spectrum of h(s )  has a gap if 1171 > 4. The Hamiltonian H ( s )  
has two important symmetry properties [Ill. The first one relates the ground states 
for s and for its conjugate s* (corresponding to W ' ( z )  = 1 - W(z)): 

E(U, N,,s') = E(-V,  N , , s )  - U N e .  ( 5 )  

The second one relates the ground states for Ne electrons and for 1A1- Ne electrons 
( N e  holes), s being fixed: 

E(U, lAl-  N , , s )  = E(-U, N , , s )  - UNi. (6) 

This last equality follows from the standard unitary transformation a: -* (-I)=a=. 
The properties ( 5 )  and (6) allow us to take U > 0 (corresponding to the physical 
case of an attraction between electrons and ions) and N. 5 N, without losing any 
generality. The question we want to address is the following: which configuration s 
minimizes E ( N e ,  s) for given N e ,  Ni and U? When Ne = Ni we say that the system 
is neutml; this situation is considered in section 3. The case Ne < Ni is considered in 
section 4. As we shall see, the behaviour of the model is quite different in both cases. 

3. The neutral case 

Before we state the main result of this section we need to  give a few definitions. Let 
us consider an arbitrary configuration s of N, ions with periodic boundary conditions. 
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We denote by dj  the distances between two successively occupied sites zj and 
i.e. d .  = - zjI. We say that s is homogeneous if 1 

d, E { d , d +  1) for some d, j = 1,. . . , N ,  

This notion of homogeneity is different from the uniform distribution property consid- 
ered by Freericks and Falicov in 1111; they consider the size of the islands of occupied 
sites. For given N ,  and A ,  there are in general many (but a t  least one) homogeneous 
configurations. Now, we would like to compare two such homogeneous configurations 
and to be able to decide which of them is the most homogeneous. To do this, we first 
associate a configuration s' E {O, l}'"$ to each homogeneous configuration s with A', 
ions in the following way: 

(7) 

If all d, = d, we set s' = sempty. Such an s is said to be regular. In other words, 
we associate an occupiedfempty site in s' with each 'short'f'long' couple of occupied 
sites in s. We say that s' is the derivative of s. For a given d the derivative is an 
invertible application, that is we can 'integrate' an s' to get s (up to a translation). 
The successive derivatives s(") are naturally defined by s(") = ( s ( " - ' ) ) ' .  Now, given 
two homogeneous configurations s, and s2 on A,  with the same number of ions, we 

is not. Figure 2 gives an example. 
say that s2 is more homogeneous than s1 if, for some n ,  s;' ( is homogeneous but s y )  

s >  ~ O H O ~ O e w o w o  

s2 w o e w o w o ~ o ~ o  

5 ;  * O * O H O W O . O  

% . O H O . O H O . O  

~ ; ' o o - o o  

5; 0 - 0 0  

Figure 2. Examples of derivatives. The black dots represent occupied sites. A 
segment connects each 'short' couple of occupied sites in a given configuration. JZ is 
more homogeneous than si hecause s;' is homogeneous whereas 8;  is not. 

We say that two configurations s1 and s2 are equivalent if s2 is a translation of 
sl. In fact, from now on and to the end of the paper we shall always use the word 
configuration to speak of one equivalence class. If we fix A and Ni, we have then the 
following. 

Lemma 1. 
neous for all n 2 0. 

There is a unique configuration shom(Nj) for which &L(N;) is homoge- 
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Proof. I f s  is an homogeneous configuration, then obviously N.(s')  < N,(s). There- 
fore, if all s(") exist, then for some m,  s("') is regular, and s('"+li is empty. Moreover, 
if Ni(s,) = Ni(sz) then Ni(sp') = Ni(s(,")) for all n and in particular for n = m. 

Now, obviously sim) = s$", which implies s1 = s2. The existence of shom(N,) will be 
proven at the beginning of the proof of theorem 1. 

Clearly the configuration shom(Ni) is more homogeneous than any other, and i t  
deserves the name of most homogeneous configuration. Notice that if pi = p / q  then 
necessarily 1A1 must be an integer multiple of Q. Thus we may always construct 
shom(N,) by repeating periodically the most homogeneous configuration in the minimal 
volume Jhl = Q. This remark in particular shows that shOm(Ni) has period q. 

Now, we can state the main result of this section. 

Theorem 1. For finite volumes A ,  Ne = N ,  and N,/IAI = p / q  ( p  and q relatively 
prime) there exists an U?"(q) < C49, with C > 0 and independent of A, p ,  q ,  N e ,  
such that for L' > Up"'(q), E ( N , , s )  takes its unique minimum at  s = shom(Ni). 

From a physical point of view, this result is rather intuitive. Three effects are in 
competition: the kinetic energy which tends to delocalize the electrons, the interaction 
which tends to iocaiize them on the ions and finaiiy ihe exciusion principie which 
prevents the electron wavefunctions from overlapping too much. When Ne = N, and 
U is large, we can imagine that each electron forms an atom with each ion. The 
exclusion principle pushes each atom away from the other and the configuration is as 
homogeneous as possible. 

Before we prove theorem 1,  we shall first derive a graphical representation for the 
perturbation series of h(s)  in terms of closed paths on the lattice A. Changing the 
normalization of (2), we define 

where R is the perturbation parameter. For s # sfu,, and s # sempty, -W has eigen- 
values 0 and -1 .  The degeneracy of -1  is equal to N , ( s ) .  If Ne = Ni(s), the Ne lowest 
eigenvalues i j ( ~ ; s )  of ~ ( K ; s )  are precisely those for which ,ij(O;s) = -1. Therefore 
it is not necessary to resort to degenerate pertubation theory [12]; we can directly 
consider the perturbation series for the sum of these Ne eigenvalues, which we denote 
by ~ ( K ; s ) :  

where 
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We see that all odd terms vanish in (9). S is the smalled reduced resolvant. The last 
equality is most easily obtained if we note that W is a projection and that S must 
satisfy 1121 

S W = W S = O  (1 - W ) S  = S(1-  W )  = 1 - W. (12) 
W and S are respectively the projectors on occupied and empty sites in A. The radius 
of convergence of (9) is larger than 

where 6 = 1 is the isolation distance of the eigenvalue -1 of -W, and \\T\( 5 2. n < ro 
implies U > 4, which is precisely the condition to have a gap in the spectrum of h ( s )  

Because T = (-tz,,) connects only nearest neighbours and the S(') are diagonal, 
we can write each trace in (10) as a sum over closed paths y of length Iyl = n 
( Y = ( Y I  , . . . , T , ) E ~ : " , l y j t l - 7 j l =  l , ~ , + ~ = ~ ~ , ~ = u ~ = ~ { y , ) i s  thesupport ofy) :  

(see (4)). 

where 07 = 5 means that the path is closed, 

(-1)'"(s;~) 

0 otherwise 
i f W ( y j ) =  l - s g n ( k j ) f o r j =  1, . . . ,  n 

(? Y) = ( c k 2 . . . k , .  

and m(s; y) = Cy=, W(yj) is the number of occupied sites visited by y. Collecting 
all terms with the same number m of indices kj = 0 in (lo), we get a Combinatorial 
factor 

(n - Z)! n - 2  
( n - m - l ) ! ( m - l ) !  = ( n - m - 1 )  

equal to the number of partitions of the integer n - 1 into n - m non-zero integers. 
(10) can then be rewritten as 

n n - m - 1  ( - l ) m ( w ) .  (15) 

a7=0 
l71=" 

m(s;-r)=m 

At last (9) becomes 

where E' means that the sum is restricted to the paths which visit at least one 
occupied and one empty site. The representation (16) for the perturbation series for 
large U is the basic ingredient for the proof of theorem 1. The factor (-l)'"('n) will 
play a central role in the proof, and we shall see that it is not as terrible as it looks. 
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We must show that for any s # shOm(N,), with N,(s )  = Ni, we Proof oftheorem 1. 
have 

E(N,,s) > E(Ni,sho,,,(Ni)) when U >U?"'. (17) 

Let us fix a configuration s. The idea is to construct a sequence ( s j ) &  of config- 
urations which interpolates between s = s, and shom(N,) = s K ,  and for which it is 
possible to show that the energy decreases a t  each step j + j + 1, namely 

E(Ne,sjtl) < E(N, , s j )  j = 1 , .  . . , K - 1 for U > 172"'. (18) 

Let us first give one more definition. Suppose sa is an arbitrary configuration (not 
necessarily homogeneous) for which the minimal distance between two successively 
occupied sites is d.  Let nd(sa) be the number of such short couples in sa. We say that 
sb is obtained from sa by an elementary move if, for some interval I C  A, 

1. %I, = 
2. 
3 .  

supp ( s b I A i I )  is a translation of supp 
nd(sb) = nd(sa) - 1. 

sh I o a o as o w o o o o o 

Y Y 

I A I  I 
Figure 3. sb is obtained from sa by an elementary move. Black dots repreent 
occupied sites. In this exmple d = 1,  ~(3.) = 2 and n,j(sb) = 1. 

Figure 3 gives an example of an elementary move. 
Now we construct our sequence (sj)g, as follows. Starting with s, = s we look 

for the smallest n 2 0 such that s$'" is not homogeneous. Performing a succession 
of elementary moves, we can transform SI"' into a homogeneous configuration sp). 
The corresponding configuration s,, . . . , sk, obtained by integration, are the k first 
configurations of our sequence. We go on by iteration, now starting with sk instead of 
s, and so on, until we reach a configuration sK  which is infinitely differentiable. This 
last configuration is then the most homogeneous configuration shorn. Figure 4 shows 
such a sequence. 

Thus, we must show that (18) is true when sj and sj+, are such that, for some n, 
SS)~ is obtained from SF' by an elementary move. We use (16) to estimate E(sjtl) - 
E ( s j ) .  This allows us to make systematic cancellations between the paths contributing 
to E ( S ~ + ~ )  and E ( s j ) .  Obviously the dominant (in K = 1/U) terms in E ( S ~ + ~ )  - 
E ( s j )  arise from the shortest paths which do not cancel in this difference. Because of 
their technical nature, a number of combinatorial results are proven in the appendix. 
Figure 5 summarizes these results and shows the general situation for s j  and sjtl. 
I , ,  Iz and I, denote intervals on which the corresponding restricted configurations are 
the same. They are also identical on the interval depicted as a wave. The interval I ,  
may he empty. It is shown in the appendix that any path which contributes to the 
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mhom. 

hom. 

hom 
s , . ~ ~ ~ ~ i s )  .--8--. 0 0 - 0 0 e4-. 0 0 mosl 

Figure 4. Example of asequence (.,)E,. Here, 1A1 = 15 and Ni = 6. The sequence 
contains K = 3 configurations SI = J , J ~  and sa = shom(6).  The m o w s  represent 
the two elementary moves. 

- r 
7 

a> a, ' Y, ~ 

6, 

Figure 5. General siluation for one step s, - a,+, 

difference E(sjtl) - E ( s j )  necessarily crosses a t  least one of the four vertical lines 6,. 
The segments zl, y2, 3 , ~  are the supports of the shortest paths contributing to the 
difference. 

There are n = IyI 
such paths (this factor and the factor l/lyl in (16) will compensateyater). Their length 
is 171 = 2(ly I - 1). All points in the interval Iz (see figure 5) are visited twice by any 
such path.-$he two remaining points (the extremities of y,) are visited only once. 
The same considerations apply to 12, and L. For those y we see that m(s; 7) in 
(16) is even if the extremities are either both occupied or both empty; i t  is odd if only 
one of them is occupied. So Y and 7 give a non-negative contribution to RI.) 
whereas 5 and give a negative contribution to E ( S ~ + ~ ) .  From 

Consider for example the shortest paths having the support y 

-,-,,, --' +1 -? 

and (16) we get then the following lower bound: 

A ( K ;  s j  j - i('c;sj+l j 2 w + EjK; sj  ( i S j  

E ( K ; S )  = o('cnCz), 
To estimate the remainder E ( K ;  s) we must consider all paths which CIOSS a t  least one 
of the vertical lines st in figure 5 ,  with length IyI 2 n + 2. For this we need an upper 
bound mA(n) on the number of closed paths with a given length n which visit one 
fixed point in A: 
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The term in I/[A1 comes from the paths which go around the circle A. The proof is 
standard. We need also a bound on the binomial coefficient in (16). Using Stirling's 
formula for the largest coefficient we obtain 

Because there are four different vertical lines, we then obtain the following hound from 
(16): 

For (19) to be positive, we must require 2 ~ "  2 I E ( K ; S ) ~ .  So for 1A1 and U sufficiently 
large we must have 

4 " K 2  5 c (23) 

where C is some numerical constant. Remember that n = 211zl is the length of the 
shortest paths which do not cancel. But if q is the period of shom(Ni) then obviously 
l1.J < q. This shows that Up"'(pi) grows exponentialy with the period 'q' of the 
ground-state configuration and concludes the proof of the theorem. 

Although theorem 1 has been proven only for large U ,  we expect the result to 
hold for any positive U .  The numerical study in [Ill seems to support this conjecture. 
We also expect it to hold, in some generalized version, in any dimension. In [6] 
we studied the Falicov-Kimball model for dimensions v > 2 in the grand canonical 
ensemble. For large U and v = 2 we derived a formal series up to order U - 3  for the 
effective interaction F(s ;pe ,p i )  of the ions. In the domain of the (pe,pi)-plane where 
N e ( p e , p i )  = Ni(pe,pi), we studied the configurations for pi = i, 4, $, f and 0. The 
corresponding ionic configurations are shown in figure 6. Looking at  figure 6, it seems 
in fact that  ions are as far as possible from each other for the given densities pi .  

0 0 0 0 0 0  
0 0 0 0 0 0  %$#)( j t j% 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0 0  

0 0 0  0 0  0 0  0 0 0 0 0 0  0 0 0 0  0 0 0 0 0 0 0  
0 0 0 0  0 0 0 0 0  0 0 0  0 0 0 0 0 0  

81 32  5, 3. S..Pl" 

P1-112 P , =  113 p i =  114 p , =  11s P i -  0 

Figure 6 .  Examples of ground-state configurations for large U in two dimensions. 
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4. Segregat ion 

In this section, we shall consider the case pe < pi for large U. The segregated config- 
uration s (Ni) in which all ions form one unique large cluster of size Ni is our main 
concern here ( W ( z )  = 1 for z = 1 , .  . . , N , ) ,  We shall show the following. 

Theorem 2. 

seg 

If Ne < N, there exists a function U r g ( p , / p i )  such that for U > 
p(pe/pi), q.~, ,~)  its unique miEiXEm at (N.) seg\-'I/' 

This situation must be contrasted with that of theorem 1 .  Intuitively the situation 
is clear: when U is very large, and there are few electrons, the system tends to lower 
their kinetic energy by making one large box [ll]. Indeed, we shall see that  the first- 
order term (in K )  in E(N, ,  s ) / U  is the kinetic energy. Note that this term was absent 
in (9) because TrT = 0. This is the reason why the behaviour of the system is very 
different in both cases. The challenge is to prove that this picture remains true when 
we include the higher order terms. 

In contrast with the neutral case, not all eigenstates corresponding to Xj  (0; s) = - 1 
are occupied. This makes life a bit more difficult because now we must consider 
explicitly the degenerate perturbation theory. We start with the usual reduction 
process [12], defining 

1 -  
T ( K ; s )  = - ( h ( K ; s )  + l ) P ( K ; S )  

K 

= P ( s ) T P ( s )  + tiT(')(ti; s) (24) 

where P ( K ; s )  is the total projection for the group of eigenvalues associated with 
,ij(O;s) = -1;  it is holomorphic a t  K = 0. P ( s )  = P ( 0 ; s )  = W and T ( ' ) ( K ; s )  given 
by 

(26) 

= ( - 1 y  E S(WT x , , , x S(h+dTS(k-.+'), (27) 
k,+ .. .+k.+2=n 

R(z)  = -(W + 2) - '  is the resolvant of the unperturbed operator -W in (8). r is a 
circle in the complex plane of radius 4 centred at the eigenvalue -1. The operators 
S(') have been defined i! (11 ) .  In the subspace generated by P ( K ;  s), the respective 
eigenvalues q j ( ~ ; s )  and X , ( K ;  s) of T ( K ; s )  and h(6;  s) are related through 

- 
X j ( ~ ; s )  = -1 + K ~ ~ ( K ; s )  j = 1, . . . , Ni. (28) 

From ( i S j  and the first equality of { S j  we aiso have that 

N. .~ 

E(N,; s) = q j ( q  s) - NeU. 
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For later reference we give also the formulae analogous to (26) and (27) for the pro- 
jector P ( K ; s )  = p(,) + K P ( ' ) ( K ;  s): 

P ( l ) ( K ; S )  = c K " p ( " + l ) ( S )  (30) 
"20 

= -(-1)n S(")T x . , , x S(*")TS(*"-+'). (32) 
b,+ ...+ l .+,=n 

For K = 0, (24) reduces to 

T ( s )  = P(s )TP(s )  (33) 
which is the restriction of the kinetic energy T to the occupied sites of s. Let q j ( s )  
be its eigenvalues. For l,! = CO the electrons are trapped into boxes corresponding 
to supp s. 'Ikeating each X j ( n ;  s) separately leads to problems in the thermodynamic 
limit, when we want to estimate the convergence radius of the series. So, we try again 
to consider directly the sum V ~ ( K ; S ) .  This is done by simply noting that this 
sum is nothing but the lowest eigenvalue of the many-body operator corresponding to 
(a slight modification of) T ( K ;  s). 

Proof of theorem 2. 
q j ( s )  takes its unique minimum at 

s = sSeg if Ne < N,. For any single-particle operator A ,  we introduce its Ne fermion 
version AN* = A ( j )  where A ( j )  acts on the j t h  electron, and AN* is restricted 
to the antisymmetric part C of (CIAl)@N*. Let E ( s )  he the subspace of antisymmetric 
wavefunctions q whose support is supps  (E(s)V(zl, . . . ,  z N J  = 0 if at least one 

z j  6 supp s). dim C(s) = (:) > 1 if Ne < N , .  The variational principle then gives 

We proceed in three steps. 
(i) First we take K = 0 and show that 

We introduce the sector D ( s )  c AN= defined by 

U ( S )  = { ( z j ) 2 1 ~ ~ l  < z2 < . . .  < zNc,all  z j  E supp SI. (35) 
An example for Ne = 2 is given in figure 7. 

Because of the antisymmetry of the wavefunctions in &(s) we need only to consider 
their restriction to the sector D ( s ) .  If V E E ( s )  and (zl . . . z N c )  = y E D ( s )  we define 
$'y = fia('1,. . , 1 " N . ) .  If IlVll = 1 then $y is normalized as a function on D ( s ) .  
If V E &(s) we have 

N .  

0, ... *NI j =1  
(VITNJ@) = - CV'(2, . .  . Z N c ) [ q ( l l  .. .' j + 1 . . .  IN-) 

+ V ( z l . .  . z j  - 1 . .  . I N c ) ]  
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Figure 7. (a) The dots on the anes'reprerent the configuration J. The crosse are 
the points of D(8).  ( b )  D ( J . . ~ )  is connected. 

where the last sum is over nearest neighbours in D ( s ) .  Then (34) becomes 

Let $(s) be a function realizing the supremum in (37). The Perron-Frobenius theorem 
[2] tells us that we can choose $,(s) 2 0 for all y E D ( s ) .  Moreover, if D ( s )  is 
connected the inequality is strict and $(s) is unique. If Ne < N,  and s # sa,&, D(s) 
LuIIbaIIIIs  IIIUIt. b'La11 UlLC CUIIIITLbt." cu,,Lpuu~'lb. u , o ,  - "&U&(*,. ""C C*'l *1waya 

consider D(sSeg)  as the union of some translations D;(s )  = r k D k ( s )  of these Ox(.) 
(see figure 7). Starting from $(s), we construct a new function $'(s) by sticking 
together the different parts of $(s), namely 

vq(y)(4 = $,(s) 

Ll...- --- ------'^.I n,-\ - I I " ,.\ .Xî ~~- 

if y E Ox(.). 

Thus we get the following inequalities: 
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where (39) follows from $,,(s) 2 0. The overall inequality can be made strict. Indeed, 
if $’(s) = +(sseg) (39) is strict because D(sSeg)  contains more nearest neighbours 
than D ( s ) .  In the opposite case, (40) is strict because the vector $(sseg) realizing the 
supremum in (40) is unique. 

Next, we keep n = 0 and we derive an estimate for the energy gap A(s, sge ) = 
E(N,,s)  - E(N,,s,,,) between a configuration s and saeg. More precisely, we s low 
that 

(ii) 

A(s, s,,~) 2 ( las i -  2)f (42) 

where lasl is the number of interfaces between occupied and empty sites in s. In other 
words, $18~1 is the number of square wells in the potential W associated with s. We 
shall prove (42) by induction over lasi .  We start with lasl = 4. For sseg we have a 
unique well of width I = N,. The eigenvalues q j ( s s e g )  are simply 

j = 1,.  . . , I .  ir 
I +  1 

q J ( s s e K )  = -2cos - 

The energy of n electrons in one single well is 

Take an s for which lasl = 4 and Ni(s) = 1, i.e. we have. two square wells of lengths 
I, and I,, I, + I, = I. The energy of n electrons in these two wells is 

for some n, and n, which depend on I, and I,. Frorn (i)  we already know that 

“ 
A(n , I1 ,b )  = Ehj((.) - q j ( s s e K ) l  = E(n1 , / , )  + E ( n Z , / J  - E(n11) > 0. (45) 

j=1  

By the way, we note that this last equality is rather hard to derive by direct compu- 
tation, starting from (43). We now want t o  verify that moreover 

A(n,/ , ,12) 2 A(:) > 0. (46) 

Knowing (45), we can prove (46) by excluding the possibility that A(n,1,, I,) vanishes 
when I - CO. We first need a good estimate for nl  and n,. After a little thought, we 
see that 

The constraints n, + n, = n and I ,  + I ,  = I moreover lead to 

n 
V , + V  , - [ + I  -- < I .  (48) 
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Let us denote p = n / ( l +  l ) ,  then from (43), (47) and (48) we obtain 

n 
A(n,l l ,12) = 1 - coss- 

1+1 

R"l coss- ) +o(I;') n 
sins- - - 

1 + 1  11+1 1 + 1  

1 n 
I +  1 

- ( I+ l )s ina-+O(/ - ' )  

where 

and 

Note that 6(p, I )  < 0 is an increasing function of I .  This and the bounds (50) imply 
that either c(p ,  1 1 , 1 2 )  > 0 or 

inf E ( P , ~ ~ , / ~ )  =+, l ; , l ; )  
1.21 
1221 

for some lT(p)  < 00. 

Therefore (49) shows that A(n,Il,12) 2 g ( p )  + & ( p , l ; , l ; )  > 0, from which (46) imme- 
diately follows. We see that g(1) = 0,  which means that the gap disappears when Ne 
approaches Ni, as we already know from section 3. 

Now we prove (42) in the general case. We start with an arbitrary configuration 
s, with r wells. Suppose n,, (L = 1 , .  . . , r ,  are the numbers of occupied states in each 
well when the system is in the ground state ( K  = 0). We construct a new configuration 
SI by changing the order of the wells such that for the first two wells of SI we have 

Suppose s2 is obtained from S ,  by sticking together the first two wells of S , .  Then 
(46) readily implies 
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Iterating the above procedure until s = sSeg yields (42). 
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(iii) Finally, we take K # 0 and give an estimate on the error ~ ( n ;  s) defined by 

Namely, we show there exists a K,, such that if K < K ,  then 

k(K;s)l  5 C K l a S l  (54) 

where C is a numerical constant. If we want sSeg to be the ground state, we must 
require that the error I E ~  be sufficiently small with respect to the gap A: 

2 l ~ ( k ;  .)I < A(s, sseg) 

or, from (42) and (54), 

2Clasln < f (t) (184 - 2) when lasl 2 4 

from which theorem 2 then immediately follows. To show (54) we shall use the fol- 
lowing consequence of the minimax principle (Al(A) denotes the  lowest eigenvalue of 
an operator A). 

Lemma 2. If A and B are twosymmetric operators, then IXl(A + B) - Xl(A)( 5 11811. 

A t  first sight, we could be tempted to take A = TNc and B = KT$)(K;s), but 
this does not work because we should remember that dim (kerT(s;s)) = 1A1- A’, > 0 
and thus the q j ( q s ) ,  j = 1 , .  , , , N e ,  are not the Ne smallest eigenvalues of T(K ;  s) (in 
the case where some of these qj(.;s) are positive). In other words, ~ ~ = . , q j ( ~ ; s )  # 
A1(TNe(~;s)). To avoid this problem, we consider the new shifted operator ~ ( K ; s )  = 
L(K;  s) - 2n. The reduction process for h then goes as follows: 

1 -  
T ( k ; s )  = - ( h ( k ; s ) +  1 ) P ( k ; s )  

K 

= f ( S ) T P ( S )  + KT(’ I (K;  S) - 2f(K;S) 

= P ( S ) ( T - 2 ) P ( S ) + ~ ( T ( ’ ) ( k ; S ) - 2 f ( ’ ’ ( k ; S ) )  

= T ( s )  + k T ( ’ ) ( c ; s )  (55) 

where the last equality defines the new unperturbed operator T(s) and its perturbation 
T(’ ) (K;s) .  But now (4) implies T ( K ; s )  5 O and thus xjz1qj(~;s) = Xl(TNe(~;s)) N -  
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Y y  " 
o o,o o o o a e e e a,e a ,  1 0  

Figure 8. Evaluation of the rank of T(') (s). A part of the configuration s is shown 
on the top and on the left of the matrix. Outside the hatched zone, the matrix 
elements of T ( ' ) ( J )  vanish. 

where q j ( " ; s )  = ~ . ( K ; s )  J - 2. We therefore take A = FNe(s) and B = K ~ $ ~ ( K ; s ) .  

From (53), (55), lemma 2, and using the operator norms 1) / I E  on E ,  we have 

l < ( K i S ) l  = I~l(FN*(6S)) - .\l(TN.(S))I 

To have good bounds on the norms in (56) we first derive an estimate on the rank of 
the corresponding single-particle operators. Indeed, for any single-particle operator 
n, w c  n,rray* I l d V C :  b,,C L U " " r r ' L 1 ~  L e l b b l U I I .  
" L -..- .Le 0-11 :..- - - I - . : - - .  

IIAN.IlE 5 (rankA)lIAil V N e .  (57) 

Formulae (27) and (32) are well suited for a calculation of the rank of T(") (s )  
and P(") ( s ) .  Following the same lines as in section 3 we rewrite the matrix elements 
T$)(E) and P$)(s) as sums over paths connecting z and y (we  note a y  = (z,, zn+,) 
i f y =  (~l,...,~n+l),l~l=n): 

The explicit expression for C(y;s) is unimportant here. In both sums the paths must 
visit at least one empty site. In (58) they must furthermore visit two occupied sites, 

P(" ) ,  we look for the most distant couple of points (2, y) connected by a path of given 
length in (58) or (59). Figure 8 shows an example. It may happen that the hatched 
zones corresponding to different interfaces overlap. 

and in (59) one 0cc.pie.l sit.e. To have an upper bQund_ on the rank of T(")(s) or 
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But in any case we have the following hounds: 

rankT(")(s) 5 (2n+ l)(as( 

rank P(")(s) 5 2nlasl. 
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We have used that llR(z)ll = 2 when z E r and the length [(r) is 2 ~ 5 .  Similarly, from 
(31) we have 

\lP(qs)\\ 5 4". (63) 

The upper hound on T(')(n:;s)I[ in (56) follows then from (57) and (60)-(63): I1 " L 

1 - 4 ~ ) ~  32 +-"> 1-4n: 

The bound (54) follows from (56) and (64); take for example K < K~ = and C = 144. 

To make the connection with 1111 we mention that in the thermodynamic limit we 
have indeed the following relation between the densities of state n ( ~ ;  8 ) :  

4 & ; s S e g )  = ( 1  -pi)n(~;s,,,,,). 

As in the neutral case, we think that this segregation takes place in any dimension. 
One open question is to see what really happens when p .  -+ 0 where our theorem tells 
us  that U y g  + m. In fact the case for one electron has been studied in [2] where it is 
shown that sIeg is the unique ground state for any W .  But, on the other hand, in this 
situation the Pauli principle plays no role. 



732 P Lemberger 

IF' 

* y J ,  

( a )  
Figure 9. Situation for one induction step k 3 k - 1 

( b )  

Appendix 

In this appendix we give a proof of the results announced in figure 5. We proceed by 
induction. Suppose indeed that we have the situation depicted in figure 9(a) for SIP) 
and s!?, for some k .  

For k = n, the intervals I F ) >  I p )  are empty and figure 9(a)  represents an elemen- 
tary move. Looking at  figure 9(b), we see that the induction step is almost obvious 
if we remember that each occupied (resp empty) site in SI."' gives two occupied sites 
in s y - ' )  with distance d ( k - l )  (resp d("-') + 1). The left occupied site coming from 
A ( k )  is just A(L-') .  That C(k-l) is empty follows from the fact that  SI."-') and SI."!'' 
are identical on the interval between the lines 6?-') and 6g-'), and because dk) is 
empty. For k = 0 we have the situation of figure 5. 

Now, using the above construction, we can make systematic cancellations of the 
contributions to E ( s j )  and E ( s , + , ) .  The 
contributions of paths having their support in I4 cancel by left-right symmetry. The 
same is true for those which have their support in A\14: Therefore all contributions 
necessarily come from paths whic'h cross a t  ieast one of the iines 6 ,  or 6,. Among 
those, we can still throw away all paths which have their support in Is because they 
cancel by (left-right) symmetry. The only remaining paths are those who cross either 
(6, and 64) or (6, and 6, )  or (6, and or (62 and 64). The shortest paths are 
precisely those depicted in figure 5. When I ,  # 0, the paths having their support in 
I ,  cancel. The same is true for those which have their support in A\14. Therefore, all 

these two intervals. The shortest path starting from B which does not cancel by any 
symmetry connects B and A .  Its support is denoted 1, in figure 5. Similar reasoning 
applies for y2, r;, and L. 

Consider first the case when I ,  = 0. 

"....A-:l...d:-"" c--- -"+L" ... L..".. ^.._ _--, :" -.-t *Am..,nt.A., ,-*"+Gma,4 ;" *f 
I.UII*L,""LII"III LUI'IC: ,,U,,, p""," W L l U U C  u"pp",Y 10 ,,"U L Y ' L L p ' c Y C L J  \ _ Y . I " Y I . L I Y  A.L v..> v. 

Acknowledgments 

I am grateful to Ch Gruber who convinced me of the existence of the segregation in 
the FK model by studying the case of periodic crenel configurations [lo]. I t  is also a 



Segregation in the Falicou-Kimboll model 733 

pleasure to thank A Mielke and A Siitb: for many fruitful and stimulating discussions. 
M Sassoli helped me proofreading the final version of the manuscript. 

References 

[l] 
[2] 
[3] 
141 
(51 
(61 
[7] 
[8] 
[9] 
[lo] 
[ll] 
1121 

Falicov L M and Kimball J C 1969 Phys. Rev. Ldl .  22 997 
Kennedy T and Lieb E H 1986 Physico 138A 320 
Brandt U and Schmidt R 1986 2. Phys. B 63 45 
Brandt U and Schmidt R 1986 2. Phya, B 67 43 
Gmber Ch, Iwanski J, Jedrzejewski J and Lemberga P 1990 Phys. Rev. B 41 2198 
Gruber Ch, J e h j e w s k i  J and Lemberger P 1991 J. Stat. Phya. to be pubhhed 
Brandt U and Mielsch C 1985 2. Phys,  B 75 365 
Jednejewski J cl al 1989 Physico 154A 529 
Jednejewski J e l  d 1989 Phya. Ldf. 134A 319 
Gruber Cb 1991 HPA to be published 
Freericks J K and Falicov L M 1990 Phyr.  Rev. B 41 2163 
Ksto T (ed) 1980 Perfrrrbofion Theory t o ?  Linear Operators (Berlin: Springer) 


